cho \(\dfrac{a}{b}=\dfrac{c}{d}\)CMR
\(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)
cho a+b+c+d khác 0 vàti\(\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}=\dfrac{a+b+c-d}{d}P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{c}{d}\right)\left(1+\dfrac{a}{d}\right)\)tính P
giúp mk với ạ , xin cảm ơn
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) CMR :\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(cho\)cho:\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}.\) cmr: \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
2. Cho \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}\). Chứng minh rằng \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}.\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{m}{n}\)
CMR \(\dfrac{a^3+c^3+m^3}{b^3-d^3-n^3}\) = \(\left(\dfrac{a+c-m}{b+d-m}\right)^3\)
mọi người ơi giup mik với ai làm đc mik tick cho
\(Cho\) \(\dfrac{a}{b}=\dfrac{c}{d}\). \(CMR:\) \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)