Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)với \(a,b,c,d\ne0\); \(c\ne\pm d\). Chứng minh rằng \(\dfrac{a}{b}=\dfrac{c}{d}\)hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)

Mặc Chinh Vũ
21 tháng 7 2018 lúc 14:55

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Trương Thị Hải Anh
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
yeens
Xem chi tiết
La Hoàng Lê
Xem chi tiết
Nguyễn Hải An
Xem chi tiết
Phuong Tran
Xem chi tiết
Uchiha Sasuke
Xem chi tiết