Ta có:
\(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)
\(A=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}\)
\(A=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)\)
Ta lại có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)
\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+3.\dfrac{1}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)
\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-3.\dfrac{1}{ab}.\dfrac{1}{-c}\)
\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\left(1\right)\)
Thay (1) vào A ta được:
\(A=abc.\dfrac{3}{abc}\)
\(A=3\)