Hình tự vẽ
Từ D kẻ DE ⊥ AB (E ∈ AB); DF ⊥ AC (F ∈ AC)
Tứ giác AEDF có: \(\widehat{DEA}=\widehat{EAF}=\widehat{AFD}=90^o\)
=> AEDF là hình chữ nhật. Lại có AD là tia phân giác \(\widehat{EAF}\)
=> AEDF là hình vuông
=> AE = AF = DF = DE = \(\dfrac{AD}{\sqrt{2}}\)
Xét ΔBED và ΔDFC có:
\(\widehat{BED}=\widehat{DFC}=90^o\)
\(\widehat{EBD}=\widehat{FDC}\) (cùng phụ với \(\widehat{ACB}\))
=> ΔBED ~ ΔDFC (g.g)
=> \(\dfrac{BE}{DF}=\dfrac{ED}{FC}\Rightarrow\dfrac{AB-AE}{DF}=\dfrac{ED}{AC-AF}\)
=> (AB - \(\dfrac{AD}{\sqrt{2}}\))(AC - \(\dfrac{AD}{\sqrt{2}}\)) = \(\dfrac{AD}{\sqrt{2}}.\dfrac{AD}{\sqrt{2}}\)
=> AB.AC - \(\dfrac{AD}{\sqrt{2}}\)(AB + AC) + \(\dfrac{AD^2}{2}\) = \(\dfrac{AD^2}{2}\)
=> AB.AC = \(\dfrac{AD}{\sqrt{2}}\)(AB + AC)
=> \(\dfrac{AB.AC}{AB+AC}=\dfrac{AD}{\sqrt{2}}\)
=> \(\dfrac{AB+AC}{AB.AC}=\dfrac{\sqrt{2}}{AD}\Rightarrow\dfrac{1}{AB}+\dfrac{1}{AD}=\dfrac{\sqrt{2}}{AD}\)