\(\Delta ABC\) đều \(\Rightarrow A=B=C=60^0\)
\(\Rightarrow cosA+cosB+cosC=3cos60^0=\frac{3}{2}\)
\(\Delta ABC\) đều \(\Rightarrow A=B=C=60^0\)
\(\Rightarrow cosA+cosB+cosC=3cos60^0=\frac{3}{2}\)
cho tam giác ABC nhọn
chứng minh cosA+cosB+cosC≤3/2
Cho tam giác ABC,vẽ 3 đường cao AD,BE,CF.CMR:
\(a)S_{AEF}=S_{ABC}.Cos^2A\\ b)AE.BF.CD=AB.AC.BC.CosA.CosB.CosC\\ c)\frac{S_{DEF}}{S_{ABC}}=1-\left(CosA-CosB-CosC\right)\)
Cho tam giác ABC vuông tại A
Cmr ab/ab+bc=tanb
Cho tam giác ABC nhọn
Cmr cosa + cosb + cosc <= 3/2
Cho tam giác ABC có góc A là góc tù. Chứng minh rằng:
sin( B+C)= sinB .cosC+ cosB .sinC
Cho tam giác ABC nhọn. Chứng minh rằng: AB^2= AC^2+BC^2-2*AC*BC*cosC
Cho tam giác ABC nhọn, đường BH và CK.
a) Hãy biểu thị cosA bằng 2 cách để chứng minh : ΔAHK ∼ ΔABC
b) Tính số đo góc A để diện tích ΔADE bằng diện tích tứ giác BCDE?
Bài 1: Cho ΔABC, góc A = α (0o < α < 900). Vẽ các đường cao BD và CE
a) CMR: DE = BC . cosA
b) Gọi M là trung điểm BC. Tính α để ΔMDE đều
Bài 2: Cho ΔABC nhọn. Gọi a,b,c lần lượt là độ dài cạnh BC,AC,AB.
a) CMR: \(\frac{\alpha}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) Có thể xảy ra: sinA = sinB - sinC không ?
cho Δabc có góc A =105°,góc B=60°,AB=a. lấy điểm E trên BC sao cho BE=a. đường thẳng qua A vuông góc với AC cắt BC tại F
a)chứng minh tam giác ABC đều và tính AH theo a
b)chứng minh góc EAD=góc EAF=45°. từ đó chứng minh ΔAEF=ΔAED
c)chứng minh: 1/AD2+1/AC2=3/4a2
cảm ơn rất nhiều
1. Cho \(\Delta ABC\) vuông tại A , trung tuyến AM = 5cm , AB = 6cm
a. Tính số đo góc \(\widehat{B}\) và đường cao AH
b. C/m : BC = AB . cosB + AC . cosC
c. Kẻ \(HE\perp AB\) , \(HN\perp AC\) . C/m : AE . AB = AN . AC
d. C/m : \(EN\perp AM\)