Cho \(\Delta\)ABC có \(\widehat{A}\) = \(90^o\), trên cạnh BC lấy điểm E sao cho BA=BE. Tia phân giác của \(\widehat{B}\) cắt AC ở D.
a, Chứng minh \(\Delta\)ABD=\(\Delta\)EBD
b, Chứng minh DA=DE
c, Tính số đo \(\widehat{BED}\)
d, Xác định độ lớn \(\widehat{B}\) để \(\widehat{EDB}\)=\(\widehat{EDC}\)
a) Xét 2 \(\Delta\) \(ABD\) và \(EBD\) có:
\(AB=EB\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\) (vì \(BD\) là tia phân giác của \(\widehat{B}\))
Cạnh BD chung
=> \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) Theo câu a) ta có \(\Delta ABD=\Delta EBD.\)
=> \(AD=ED\) (2 cạnh tương ứng).
c) Theo câu a) ta có \(\Delta ABD=\Delta EBD.\)
=> \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^0\left(gt\right)\)
=> \(\widehat{BED}=90^0.\)
Câu d) thì mình nghĩ đã nhé.
Chúc bạn học tốt!