Lập pt các cạnh của tam giác ABC, B(2;-1). Đường cao và phân giác trong lần lượt từ A và C lần lượt là 3x-4y+27=0 và x+2y-5=0
Cho tam giác ABC có : C(0;-2) Pt đường cao AH : x+2y-1=0 Pt trung tuyến BN : -x+y=0 Tìm tọa độ A,B
Cho \(\Delta ABC\), phân giác kẻ từ A, đường cao kẻ từ C có pt lần lượt là \(x-y=0;2x+y-3=0\). Đt AC đi qua M vs AB = 3AM. Tìm tọa độ B
1) Cho hình vuông ABCD có đỉnh A(3;4) và 1 đường cao có pt: \(\left\{{}\begin{matrix}x=t\\y=8+7t\end{matrix}\right.\)
Viết pt các cạnh và đường chéo thứ 2 của h.vuông
2) Cho hình chữ nhật ABCD có cạnh AB : x-2y-1=0 , đ/c BD ; x-7y+14=0 , đ/c AC qua điểm M(2;1). Tìm tọa độ các đỉnh của hcn
Trong mp với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC=4AN. Đường thẳng DM có pt y-1=0 và \(N\left(\dfrac{1}{2};\dfrac{-3}{2}\right)\). Xác định tọa độ A
cho tam giác ABC có đường tròn nội tiếp tiếp xúc với BC ,CA,AB tại M.N.P. D là trung điểm BC. biết M(-1 ,1) và pt NP: x+y-4=0; pt AD: 14x-13y+7 =0 . tìm tọa độ điểm A
1. Cho điểm A\(\left(8;-1\right)\) và đường thẳng d: \(2x-y-7=0\). Viết pt đt d đi qua O sao cho khoảng cách từ A đến đường thẳng d lớn nhất .
2. Cho điẻm M (3;1) .Viết pt đt Δ đi qua M ,cắt tia Ox và tia Oy tương ứng tại A và B ( khác O ) sao cho :
a) \(P=\dfrac{9}{OA^2}+\dfrac{4}{OB^2}\) nhỏ nhất
\(\Delta ABC\) đường trung tuyến kẻ từ B, phân giác góc B có pt lần lượt là \(x+2y-3=0;x+y-2=0\), đt AB đi qua M(1;2). Đtr ngoại tiếp tam giác có bán kính = \(\sqrt{5}\). Tìm tọa độ các đỉnh biết \(y_A>0\)
Cho \(_{\Delta ABC}\) cân B, đỉnh A(1;-1), C(3;5). Đỉnh B thuộc d:2x-y=0. Viết pt đường thẳng AB, BC. Tính khoảng cách từ gốc tọa độ đến đường thẳng BC.