Tự vẽ hình
a) Xét \(\Delta\) MHB và \(\Delta\) MKC có :
HM = HK ( gt )
\(\widehat{HMB}=\widehat{KMC}\) ( đối đỉnh )
BM = MC ( M là trung điểm của BC )
=> \(\Delta\) MHB = \(\Delta\) MKC ( c-g-c)
b) Nối HC
Vì MH \(\perp\) AB
AC \(\perp\) AB
=> MH // AC
=> \(\widehat{CHK}=\widehat{HCA}\) ( so le trong )
Theo câu a : \(\Delta\) MHB = \(\Delta\) MKC
=> \(\widehat{BHM}=\widehat{MKC}\)
Mà \(\widehat{BHM}=90^0\) ( do MH \(\perp\) BH )
=> \(\widehat{MKC}=90^0\)
=> HK \(\perp\) KC
Xét \(\Delta\) HCK vuông tại K và \(\Delta\) CHA vuông tại A có :
HC chung
\(\widehat{CHK}=\widehat{HCA}\) ( chứng minh trên )
=> \(\Delta\) HCK = \(\Delta\) CHA ( ch - gn )
=> HK = AC ( cặp cạnh tương ứng )
(tự vẽ hình nhá bạn)
a.CM:ΔMHB =ΔMKC
xét ΔMHB và ΔMKC có:
MB = MK (gt)
góc BMH = góc CMK ( hai góc đối đỉnh)
MH = MK ( gt)
=> ΔMHB =ΔMKC (c.g.c)
**hì, sorry bạn, 2 câu kia có gì chỉ sau nhé!
câu c) hình như sai đề
Hình như phải là :
BC2 - AC2 = ( 2 .\(\sqrt{AK^2-HK^2}\) )2