(Tự vẽ hình)
a) +) Gọi M là giao của AB và HE, N là giao của AC và HF.
+) Vì H đối xứng với E qua AB nên ME = MH.
+) Hai tam giác AME và AMH có:
+) AM chung
+) ME = MH (c/m trên)
+) \(\widehat{AME}=\widehat{AMH}=90^o\)
\(\Rightarrow\Delta AME=\Delta AMH\left(c.g.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AE=AH\left(1\right)\\\widehat{MAE}=\widehat{MAH}\left(2\right)\end{matrix}\right.\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}AF=AH\left(3\right)\\\widehat{NAF}=\widehat{NAH}\left(4\right)\end{matrix}\right.\)
+) Từ (1), (3) \(\Rightarrow AE=AF\) (*)
+) Từ (2), (4) \(\Rightarrow\widehat{EAF}=2\left(\widehat{MAH}+\widehat{NAH}\right)=2\widehat{MAN}=180^o\) (**)
+) Từ (*) và (**) \(\Rightarrow\) A là trung điểm của đoạn thẳng EF
b) Dễ thấy \(\Delta BME=\Delta BMH\left(c.g.c\right)\Rightarrow BE=BH\)
Tương tự, CF = CH
Do đó BC = BH + CH = BE + CF
* Chú ý: Vì \(\widehat{ABC},\widehat{ACB}< 90^o\) nên H nằm giữa B và C, do đó BH + CH = BC