a,
xét \(\Delta\) AHD và \(\Delta\) AHB có
<DAH chung
< ADH=<AHB(=90)
\(\Rightarrow\Delta AHD\) ~ \(\Delta AHB\)
b,\(\dfrac{\Rightarrow AH}{BA}=\dfrac{AD}{AH}\Rightarrow AH^2=AB\cdot AD\)
ta có <ABC+< BAH=90\(^0\)
< BAH+<HAC=90\(^0\)
\(\Rightarrow\) <ABC=<HAC
xét \(\Delta\) ABH và \(\Delta\) CAH
<ABH=<CAH (cmt)
<AHB=<AHC(=90)
\(\Rightarrow\Delta ABH\) ~ \(\Delta CAH\)
\(\dfrac{\Rightarrow AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=HB\cdot HC\)
ta có \(AB\cdot AD=AH^2\)
\(HB\cdot HC=AH^2\)
\(\Rightarrow AD\cdot AB=HB\cdot HC\) (dpcm)
Hình tự vẽ nha
a) Xét Δ AHD và Δ AB có
∠ H = ∠ D ( = 90o )
∠ A chung
Vậy △ AHD ∼ △ADB