Ta có: \(a^4-a^3b+b^4-ab^3\ge0\) (*)
<=> \(a^3\left(a-b\right)+b^3\left(b-a\right)\ge0\)
<=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
<=> \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)
<=> \(\left(a-b\right)\left[\left(a-b\right)\left(a^2+ab+b^2\right)\right]\ge0\)
<=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (1)
(1) đúng => (*) đúng
áp dụng bất đẳng thức cô si cho 4 số không âm ta có
a4+b4+a4+a4 >= 4\(\sqrt[4]{a^4.b^4.a^4.a^4}\)=4a3b(1)
a4+b4+b4+b4 >= 4\(\sqrt[4]{a^4b^4b^4b^4}\)= 4ab3 (2)
từ (1) và (2) suy ra : 4(a4+b4)>=4(a3b+ab3)
<=> a4+b4>= a3b+ab3
<=> a4+b4 -a3b-ab3>=0 (đpcm)