Cho tam gíac ABC nhọn ( AB< AC) nội tiếp đường tròn (O), 3 đường cao AD,BE, CF cắt nhau tại H; AD cắt ( )0 tại K, tiếp tuyến tại C của (O) cắt FD tại M, AM cắt (O) tại I, BI cắt MD tại N. Chứng minh 3 điểm C, N, K thẳng hàng
cho tam giác nhọn abc nội tiếp đường tròn (o).các đường cao ad,be,cf cắt nhau tại h.ad kéo dài cắt nhau tại điểm k(k khác a).đường thẳng ef cắt (o) tại m và n(f nằm giữa e và m). a,chứng minh d là trung điểm của hk. b,chứng minh oa vuông góc với mn. c,chứng minh am là tiếp tuyến của đường tròn ngoại tiếp tam giác mdh.
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho \(\Delta\)ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt tại H. Kẻ đường kính AN. Gọi I là giao điểm của 2 đường thẳng BC và EF. Tia NH cắt (O) tại M.
a) Chứng minh: tứ giác BCEF nội tiếp và 5 điểm A, M, E, H, F cùng thuộc một đường tròn.
b) Chứng minh 3 điểm I, M, A thẳng hàng.
c) Qua D, kẻ đường thẳng // AC cắt AB và AI lần lượt tại K và L. Chứng minh : KA.CN = KL .CH
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Dường cao BE; CF cắt nhau tại H
a) Vẽ hình
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho ∆ ABC nhọn (AB < AC) nội tiếp đường tròn (O), các đường cao BE và CF cắt nhau tại H a) Chứng minh tứ iacs AEHF và BCEF nội tiếp b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O) (D là tiếp điểm, D thuộc cung nhỏ BC) Chứng minh ID2 = IB.IC c) DE.DF cắt đường tròn (O) tại M và N. Chứng minh NM//EF
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R), các đường cao BE, CF (E thuộc AC, F thuộc AB). b) Đường thẳng EF cắt đường tròn (O; R) tại M và N (F nằm giữa M và E). Chứng minh AM = AN.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O; đường cao BE, CF cắt nhau tại H. M là trung điểm BC, I là trung điểm AH. Chứng minh: OM=AI
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng