sử dụng tính chất đường tròn nội tiếp nhé bn
sử dụng tính chất đường tròn nội tiếp nhé bn
Cho \(\Delta ABC\) có \(\widehat{A}=120^0\), các đường phân giác AD, BE, CF cắt nhau tại O
a) Cm : DE là tia phân giác góc ngoài của \(\Delta ABC\)
b) Tính \(\widehat{EDF}\)
c) Kẻ \(OM\perp AB\), Cm : 2AM = AB + AC - BC
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
Cho \(\Delta ABC\) có 3 góc nhọn và \(AB< AC\) . Tia phân giác của \(\widehat{BAC}\) cắt BC ở D . Tia \(BE\perp AD\) , tia BE cắt AC tại F .
a) Chứng minh AB = AF
b) Qua F , vẽ đường thẳng song song với BC cắt AD tại H . Lấy \(K\in DC\) sao cho FH = DK . Chứng minh : DH = KF và DH // KF
c) So sánh \(\widehat{ABC}\) và \(\widehat{ACB}\)
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
cho ΔABC có hai đường phân giác AD và BE. CMR:
a) Nếu \(\widehat{ADC}=\widehat{BEC}\) thì \(\widehat{BAC}=\widehat{ABC}\)
b) Nếu \(\widehat{ADC}=\widehat{BEC}\) thì \(\widehat{BAC}+\widehat{ABC}=120^o\)
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Cho \(\Delta ABC\) vuông tại A (AB>AC).Vẽ tia phân giác của góc C cắt AB tại D.Trên cạnh BC lấy điểm E sao cho CE=CA
a)Chứng minh:\(\Delta CDA=\Delta CDE\) và \(DE\perp BC\)
b)Qua C vẽ đường thẳng vuông góc với AC.Qua A vẽ đường thẳng song song với CD,hai đường này cắt nhau tại M.Chứng minh: AM=CD
c)Qua B vẽ đường thẳng vuông góc với CD tại N và cắt AC tại K.Chứng minh:AK=BEvà K;E;D thẳng hàng.
(❤Mọi Người Nhớ Giúp Mình Nha❤)
Cho ΔABC, góc BAC = 120°, đường phân giác AD của góc A từ D hạ DE⊥AB, DF ⊥ AC
a) ΔDEF là tam giác gì?
b) Qua C vẽ đường thẳng song song với AD nó cắt AB tại M, cho biết
ΔACM là tam giác gì?
c) Cho CM=a, CF=b. tính AD( a>b)
Cho ∆ABC có góc B = 60°, tia phân giác của góc BAC cắt BC tại D . Tia phân giác của góc ACB cắt AB ở E . AD và CE cắt nhau tại O Chứng minh rằng : a) góc ADC bằng 120° b) OE = OD