Cho tam giác ABC có đường cao AH (H thuộc BC). Gọi E, F lần lượt là trung điểm của AB, AC
a) Chứng minh AH ^ EF.
b) EF cắt AH tại K. Chứng minh KA = KH.
Bài 4: Cho tam giác ABC. Vẽ đường cao AH. Gọi D, E theo thứ tự là trung điểm của các cạnh AB và AC. Vẽ DI và EK cùng vuông góc với BC. Chứng minh rằng :DI = EK. Gợi ý : - Học sinh tự vẽ hình minh họa. - dựa vào đường trung bình chứng minh DI = 1/2 AH và EK = 1/2AH.
Cho ΔABC cân tại A, có AH là đường cao. Vẽ HK ⊥ AC tại K. Gọi E, F lần lượt là trung điểm của KC, KH
a) C/m: EF ⊥ AH
b) C/m: AF ⊥ BK
Mik đang cần gấp câu b ạ, giúp mik với. Tks trước!
Cho ΔABC có đường cao AH . Kẻ HE ⊥ AB tại E kéo dài HE lấy EM = EH . Kẻ HF ⊥ AC tại F , kéo dài HF lấy FN = FH . gọi I là trung điểm của MN .C/m
a, BM⊥AM
b, AI ⊥ EF
Cho △ABC cân tại A có AH là đường cao. Lấy E và K lần lượt là trung điểm của AB và AC.
a) Chứng minh: EK là đường trung bình của △ABC.
b)Chứng minh: Tứ giác BEKC là hình thang cân.
c) Đường thắng EK cắt AH tại I. Chứng minh: I là trung điểm AH
Bài 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của đường cao AH, D là giao điểm của CM và AB
a)Gọi N là trung điểm của BD. Chứng minh rằng: HN // DC
b)Chứng minh rằng AD =1/3 AB
Cho tam giác ABC có AH là đường cao. Gọi E và F lần lượt là trung điểm của AB và AC. đoạn thẳng AHI. điểm của a)Biết BC = 6 cm, Tỉnh độ dài EF. b)Đoạn thẳng EF cắt AH tại I. Chứng minh: I là trung điểm AH
Bài 3: Cho tam giác ABC cân tại A. Gọi M là trung điểm của đường cao AH, D là giao điểm của CM và AB.
a) Gọi N à trung điểm của BD. Chứng minh rằng HN //DC.
b) Chứng minh rằng: AD=\(\dfrac{1}{3}\)AB
Cho tam giác ABC nhọn,đường cao AH.Kẻ HE vuông góc với AB,trên tia HE lấy điểm M sao cho E là trung điểm của HM.Kẻ HF vuông góc với AC ,trên tia HF lấy điểm N sao cho F là trung điểm của HN.CMR
a) tam giác AMN cân
b) EF//MN
c)Gọi I là trung điểm của MN.CMR:AI vuông góc với EF
d) góc MAN=2.BAC