Cho ΔABC, M là trung điểm của BC. Kẻ AH ⊥ BC ( H∈BC). Lấy điểm D sao cho M là trung điểm AD. Lấy điểm K sao cho H là trung diểm AK. Nối BK, CD
a) Biết rằng AB = 12cm, AH = 5cm, tính độ dài BH
b) Chứng minh ΔBAK = ΔBKH
c) Chứng minh ΔACM = ΔKCM, từ đó suy ra KM = 1/2 AD
d) Chứng minh KD // BC
Cho ΔABC cân tại A. Lấy điểm D trên cạnh AB,điểm E trên cạnh AC sao cho BD=CE
Chứng minh:
a) DE // BC
b) Δ ABE = Δ ACD
c) Gọi O là giao điểm của BE và CD. Chứng tỏ rằng AO đi qua trung điểm của BC
d) Trên nửa mặt phẳng là bờ BC không chứa điểm A , ke Bx ⊥ AB tại B , Cy ⊥ AC tại C .
Tia Bx và Cy cắt nhau tại I .CMR A,O,I thẳng hàng
Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm
a/ Chứng minh tam giác ABC là tam giác vuông
b/ Gọi M là trung điểm của cạnh AC. Trên tia đối của tia MB, lấy điểm D sao cho MB = MD.
Chứng minh △ABM = △CDM, suy ra AC ⊥ CD.
c/ Gọi N, K lần lượt là trung điểm của CD và BC, BN cắt AC tại H. Chứng minh K, H, D thẳng hàng.
Cho Δ\(ABC\)\(\perp A\). AH là đuờng cao. Trên tia đối của AH lấy D sao cho AH = AD. Gọ E là trung điểm của HC, F là giao điểm của DE và AC. Gọi I là trung điểm của AH.
a, HF cắt CD tại trung điểm của CD
b, \(HF=\dfrac{1}{3}DC\)
c, \(EI\perp AB\)
d, \(BI\perp CD\)
Cho ABC có AB < AC. Gọi M là trung điểm của BC, trên tia AM lấy điểm D sao cho
M là trung điểm của AD.
a) Chứng minh = MAB MDC
b) Chứng minh AB // CD và so sánh hai góc MAB và MAC
c) Kẻ AH BC ⊥ tại H, DK BC ⊥ tại K. Chứng minh AH = DK.
d) Chứng minh AD > 2.DK
e*) Trên đoạn thẳng AM lấy điểm G sao cho AG =2.GM Tia BG cắt AC tại N, tia CG cắt
AB tại P. Chứng minh AM+BN+CP>3/4(AB+AC+BC)
Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AClấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AEa) Chứng minh rằng : △ ABC = △ ADEb) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh △ ADM = △ ABN và △ AMN vuông cânc) Qua E kẻ EH ⊥ BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE ⊥ BD
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm; đường phân giác BD
(Dϵ AC). Kẻ DE vuông góc với BC ( Eϵ BC). Gọi F là giao điểm của BA và ED.
a) Tính BC.
b) Chứng minh △ABD = △EBD.
c) Chứng minh BD là đường trung trực của AE.
d) Tính AF và chứng minh AD< DC.
giúp mình với các tình yêu mình cần gấp
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.