Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho dãy số xác định bởi \(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=\dfrac{4u_n+2}{u_n+3}\end{matrix}\right.\) . Tính \(lim\left(u_n+4\right)\)

Nguyễn Việt Lâm
22 tháng 1 lúc 23:41

Dạng \(u_{n+1}=\dfrac{au_n+b}{cu_n+d}\) này có 1 cách làm chung:

Đặt \(v_n=u_n+k\) với k sao cho sau khi chuyển vế rút gọn thì tử số của \(\dfrac{au_n+b}{cu_n+d}\) triệt tiêu mất số hạng tự do b là được.

Ví dụ ở bài này, ta đặt ra nháp:

\(u_n=v_n+k\Rightarrow v_{n+1}+k=\dfrac{4\left(v_n+k\right)+2}{v_n+3+k}\)

\(\Rightarrow v_{n+1}=\dfrac{4v_n+4k+2}{v_n+k+3}-k=\dfrac{4v_n+4k+2-k\left(v_n+k+3\right)}{v_n+k+3}\)

\(=\dfrac{\left(4-k\right)v_n+2-k^2+k}{v_n+k+3}\)

Cần k sao cho \(-k^2+k+2=0\Rightarrow k=-1\) (lấy số nhỏ cho gọn). Vậy là xong. Thực tế ta làm như sau:

Đặt \(u_n=v_n-1\Rightarrow v_1=u_1+1=4\)

\(v_{n+1}-1=\dfrac{4\left(v_n-1\right)+2}{v_n+2}\Rightarrow v_{n+1}=\dfrac{4v_n-2}{v_n+2}+1=\dfrac{5v_n}{v_n+2}\)

(sau đó nghịch đảo 2 vế):

\(\Rightarrow\dfrac{1}{v_{n+1}}=\dfrac{v_n+2}{5v_n}=\dfrac{2}{5}.\dfrac{1}{v_n}+\dfrac{1}{5}\)

(Đây là gần như 1 dãy bình thường rồi)

(Tiếp tục đặt \(\dfrac{1}{v_n}=x_n+k\) sao cho triệt tiêu nốt số hạng \(\dfrac{1}{5}\) bên phải đi:

\(x_{n+1}+k=\dfrac{2}{5}\left(x_n+k\right)+\dfrac{1}{5}\Rightarrow x_{n+1}=\dfrac{2}{5}.x_n+\dfrac{2k}{5}+\dfrac{1}{5}-k\)

\(\Rightarrow\dfrac{2k}{5}+\dfrac{1}{5}-k=0\Rightarrow k=\dfrac{1}{3}\))

Đặt \(\dfrac{1}{v_n}=x_n+\dfrac{1}{3}\Rightarrow x_1=\dfrac{1}{v_1}-\dfrac{1}{3}=\dfrac{1}{4}-\dfrac{1}{3}=-\dfrac{1}{12}\)

\(\Rightarrow x_{n+1}+\dfrac{1}{3}=\dfrac{2}{5}\left(x_n+\dfrac{1}{3}\right)+\dfrac{1}{5}\Leftrightarrow x_{n+1}=\dfrac{2}{5}x_n\)

Đây là công thức cấp số nhân dạng , do đó ta có: \(x_n=-\dfrac{1}{12}.\left(\dfrac{2}{5}\right)^{n-1}\)

\(\Rightarrow\dfrac{1}{v_n}=x_n+\dfrac{1}{3}=-\dfrac{1}{12}.\left(\dfrac{2}{5}\right)^{n-1}+\dfrac{1}{3}=-\dfrac{2^{n-1}}{12.5^{n-1}}+\dfrac{4.5^{n-1}}{12}=\dfrac{4.5^{n-1}-2^{n-1}}{12.5^{n-1}}\)

\(\Rightarrow v_n=\dfrac{12.5^{n-1}}{4.5^{n-1}-2^{n-1}}\)

\(\Rightarrow u_n=v_n-1=\dfrac{12.5^{n-1}}{4.5^{n-1}-2^{n-1}}-1\)

\(lim\left(u_n+4\right)=lim\left(\dfrac{12.5^{n-1}}{4.5^{n-1}-2^{n-1}}+3\right)=\dfrac{12}{4}+3=6\)

Đây là cách làm cơ bản, còn trên thực tế, khi trắc nghiệm chỉ cần đơn giản như sau:

Giả sử \(lim\left(u_n\right)=a\), hiển nhiên dãy đã cho dương nên a dương

Lấy giới hạn 2 vế giả thiết:

\(lim\left(u_{n+1}\right)=lim\left(\dfrac{4u_n+2}{u_n+3}\right)\Rightarrow a=\dfrac{4a+2}{a+3}\)

\(\Rightarrow a^2+3a=4a+2\)

\(\Rightarrow a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=2\end{matrix}\right.\) \(\Rightarrow a=2\)

\(\Rightarrow lim\left(u_n+4\right)=2+4=6\)

Nhanh hơn khoảng 1 tỉ lần :D


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
I lay my love on you
Xem chi tiết
Big City Boy
Xem chi tiết