a) Xét Δ AHB :
D là trung điểm của HB
F là trung điểm của AH
Do đó DF là đường trung bình của Δ AHB
=> DF //AB
mà AB ⊥ AC
Nên DF⊥AC
b) Xét ΔADC :
AH và DF là 2 đường cao
AH \(\cap\) DF = \(\left\{F\right\}\)
Vậy nên F là trực tâm của ΔADC
=> CF ⊥ AD
c) Xét Δ AHC :
F là trung điểm của AH
E là trung điểm của HC
Do đó EF là đường trung bình của Δ AHC
=> EF // AC
mà AB ⊥ AC
Nên EF ⊥ AB
Xét ΔABE :
EF và AH là 2 đường cao
EF \(\cap AH=\left\{F\right\}\)
Vậy F là trực tâm của ΔABE
=> BF ⊥ AE