Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Tuyết Vân

Cho ΔABC vuông tại A có BC = 5cm. Kẻ phân giác BD (D thuộc AC).
a) Tính AC, AD và DC. Biết AB = 3cm
b) Kẻ đường cao AH của ΔABC. Chứng minh ΔABC đồng dạng ΔHAC
c) Tính diện tích của ΔHAC. Biết AB = 3cm
d) Chứng minh: BA.BC > BD^2
e) Gọi F, E lần lượt là hình chiếu của H trên AB, AC. Xác định vị trí của điểm A để diện tích của hình chữ nhật AFHE lớn nhất.

Hồng Quang
21 tháng 4 2018 lúc 21:01

a) \(AC^2=BC^2-AB^2=5^2-3^2=4^2\)

\(\Rightarrow AC=4\left(cm\right)\)

Rồi mấy cạnh còn lại tự tính :P

b) Xét tam giác ABC và tam giác AHC ta có:

\(\widehat{BAC}=\widehat{AHC}\left(=1v\right)\)

\(\widehat{C}\) chung

\(\Rightarrow\Delta ABC\sim\Delta AHC\left(g.g\right)\)

c) \(HC.BC=AC^2\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)

\(\Rightarrow AH^2=AC^2-HC^2=4^2-3,2^2=5,76\)\(\Rightarrow AH=2,4\left(cm\right)\)

Rồi từ đây dễ dàng tính diện tích


Các câu hỏi tương tự
Hong Dao
Xem chi tiết
trannguyen
Xem chi tiết
chó sủa
Xem chi tiết
A B C
Xem chi tiết
hung nguyen
Xem chi tiết
trannguyen
Xem chi tiết
Khoi Minh
Xem chi tiết
Trần Bắc Huyền
Xem chi tiết
Phương Hà
Xem chi tiết