Cho tam giác ABC, O là điểm bất kì nằm tring tamm giác. Các tia AO, BO, CO cắt BC, CA, AB tại P, Q, R. Chứng minh: \(\sqrt{\dfrac{OA}{OP}}+\sqrt{\dfrac{OB}{OQ}}+\sqrt{\dfrac{OC}{OR}}\ge3\sqrt{2}\)
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Lấy điểm M bất kỳ thuộc đoạn OA (M khác O, A). Tia DM cắt (O) tại N.
1) Chứng minh OMNC là tứ giác nội tiếp.
2) Chứng minh DM.DN = DC.DO .
3) Tiếp tuyến tại C với đường tròn (O) cắt tia DM tại E, đường tròn ngoại tiếp tam giác CDE cắt BC tại F. Chứng minh DF // AN.
4) Nối B với N cắt OC tại P. Tìm vị trí của điểm M để OM/AM + OP/CP đạt GTNN.
Cho tam giác ABC , O là 1 điểm bất kỳ nằm trong tam giác ABC . Kéo dài AO, BO, CO lần lượt cắt các cạnh BC, CA, AB tại M, N, P. Cm AO/AM+BO/BN+CO/CP=2
Giải chi tiết giúp mình nha
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
Cho tam giác ABC. Gọi O là một điểm bất kì trong tam giác. Gọi da, db, dc tương ứng là các khoảng cách từ điểm O đến các cạnh BC, CA, AB. Xác định điểm O để tích da.db.dc đạt giá trị lớn nhất
MỌI NGƯỜI GIÚP MÌNH VỚI, MÌNH CẦN GẤP MÀ NGHĨ MÃI KHÔNG RA
cho Δ abc va O là điểm bất kì trongΔ.các tia oa,ob,oc cắt bc,ca,ba lần lượt tại p,q,r
cmr
a)op/ap+oq/bq+or/cr=1
b)ap/op+bq/oq+cr/or≥9
Cho tam giác đều ABC và O là một điểm nằm trong tam giác. Gọi M, N, P lần lượt là giao điểm của AO, BO, CO với BC, CA, AB. Chứng minh rằng:
a) \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}\le\frac{1}{3}\left(\frac{1}{OM}+\frac{1}{ON}+\frac{1}{OP}\right)\)
b) \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}\le\frac{2}{3}\left(\frac{1}{OA}+\frac{1}{OB}+\frac{1}{OC}\right)\).
tam giác ABC nhọn nội tiếp đường tròn (O;R), N bất kì thuộc BC(N≠B,C). AN cắt (O) tại M; E,H là hình chiếu của M trên AB,AC. MD vuông góc BC(Dϵ BC)
1 CMR : H,D,E thẳng hàng
2 tìm vị trí của N trên BC để EH Max
Cho nửa đường tròn (O;R) đường kính AB. M chuyển động trên nử (O). Xác định vị trí của M để bán kính đường tròn nội tiếp tam giasc MAB đạt giá trị lớn nhất.