Bài 1:Cho tam giác ABC. Gọi I là tâm đường tròn ngoại tiếp tam giác. Chứng minh rằng. a.vecto IA + b.vecto IB+ c.vecto IC= vecto O
Bài 2: Cho tam giác ABC. Gọi M là điểm trên cạnh BC. Chứng minh:
Vecto AM= MC/BC.vectoAB+MB/BC.vectoAC
Bài 1: Cho 4 điểm A B C D. Chứng minh nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) thì \(\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 2: CMR nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì \(\overrightarrow{AC}=\overrightarrow{BC}\)
Bài 3: Cho tam giác ABC. Lần lượt vẽ các điểm M N P thỏa mãn \(\overrightarrow{AM}=\overrightarrow{BA},\overrightarrow{BN}=\overrightarrow{CB},\overrightarrow{CP}=\overrightarrow{AC}\). Gọi I là một điểm bất kì, chứng minh \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\)\(\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
1. Cho tam giác ABC . Các điểm M,N thỏa mãn : \(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\)
a. Tìm điểm I sao cho \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{O}\)
b. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định
c.gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định
Cho tam giác ABC đều cạnh a (a>0).
1) D là điểm nằm trong tam giác. Gọi M, N, P lần lượt là hình chiếu vuông góc của D trên cạnh BC, CA, AB. Gọi G và G' lần lượt là trọng tâm các tam giác MNP, ABC. Chứng minh rằng D, G, G' thẳng hàng.
2) Tìm GTNN của biểu thức \(y=3\left|\overrightarrow{IA}+\overrightarrow{IB}-\overrightarrow{IC}\right|+\left|\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right|\)theo a khi I thay đổi trên đường thẳng AB.
Cho tam giác ABC đều có AB = 2a. Gọi I là trung điểm của trung tuyến AM. Tính \(\left|\overrightarrow{BA}-\overrightarrow{BI}\right|\) theo a.