Bài 92:Cho tam giác ABC cân tại A,các đường cao AA',BB',CC' gặp nhau tại H.
a)C/m tam giác AC'B' đồng dạng với tam giác ABC;tam giác HB'C' đồng dạng với tam giác HBC;BB'C đồng dạng với AA'C.
b)Tính B'C' nếu BC=4cm,AB=AC=3cm.
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của \(\widehat{AIC}\) và \(\widehat{AIB}\). Chứng minh rằng: AN.BI.CM = BN.IC.AM
c) Tam giác ABC như thế nào thì biểu thức \(\dfrac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\) đạt giá trị nhỏ nhất ?
Cho ΔABC nhọn ( AB < AC ) có hai đường cao BE và CF cắt nhau tại H.
a) CM : △ABE \(\sim\) △ACF
b) CM : HC . HF = HB . HE
c) Kẻ đường cao ED của △BEC cắt CF tại K. CM : CE2 = CF . CK
câu c á mng giúp em cảm ơn ạ
Cho △ABC nhọn có các đường cao AA/, BB/, CC/ cắt nhau tại H. Gọi K là trung điểm của AH, I là giao điểm của B/C/ và AH. Chứng minh I là trực tâm của △KBC.
Cho Δ ABC nhọn có hai đường cao AD và BE cắt nhau tại H ( D ∈ BC , E ∈ AC ) . a) Chứng minh : HA . HD = HB . HE b) Chứng minh : góc BAD = góc DEB
Tam giác ABC nhọn có AB<AC, góc A bằng 45 độ, các đường cao BD,CE cắt nhau tại H.
a. Chứng minh tam giác HED đồng dạng với tam giác HBC
b. Chứng minh tam giác AED đồng dạng với tam giác ABC
c. Tính DE khi BC bằng căn bậc 2
cho tam giác abc vuông tại a, 1 đường thẳng vuông góc với bc tại d cắt ac,ab tại e, f.
chứng minh
a)db.dc=de.df
b)AH là đướng cao của tam giác abc, biết HB = 3cm, HC = 12cm. Tính AH
cho tam giác abc vuông tại a, 1 đường thẳng vuông góc với bc tại d cắt ac,ab tại e, f.
chứng minh
a)db.dc=de.df
b)AH là đướng cao của tam giác abc, biết HB = 3cm, HC = 12cm. Tính AH
Cho tam giác ABC vuông tại A,đường cao AH.Kẻ HE.HF vuông góc với AB,AC lần lượt tại E và F.Gọi M,N,P lần lượt là trung điểm ủa BC,HB,HC.
a)Chứng minh AH=EF
b)Chứng minh EN=\(\frac{1}{2}\)HB
c)Tính diện tích tứ giác NEFP biết AB=6m,AC=8cm
d)Chứng minh AM//EN