Cho \(\Delta\)ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BM vuông góc với AD tại M, kẻ CN vuông góc với AE tại N. Gọi O là giao điểm của hai đường thẳng BM và CN. CMR: AO là tia phân giác góc DAE.
Cho ∆ ABC có AB = AC , kẻ BD Vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB ). Gọi O là giao điểm của BD và CE. Chứng minh
a) BD = CE
b)∆ OEB = ∆ ODC
c) AO là tia phân giác của góc BAC.
d) CMR: AO đi qua trung điểm của BC.
Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
Bài 9: Cho tam giác ABC cân tại A. Kẻ BD ⊥ AC, CE ⊥ AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD = CE
b) ΔOEB = ΔODC
c) AO là tia phân giác của góc BAC
d) Cho biết BE = 3cm, BC = 5cm. Tính BD
e) Gọi M là trung điểm của BC. Chứng minh A,O,M thẳng hàng
Cho tam giác ABC vuông ở A. Trên tia đối của tia BA và tia đối của tia BC lần lượt lấy các điểm E và F sao cho B là trung điểm của AE và CF
a) CMR: EF vuông góc với EA
b) CMR: AF=CE ; AF//CE
c) Gọi H và K lần lượt là trung điểm của CE và AF.
CMR: Ba điểm H,B,K thẳng hàng.
Mọi người giúp mk nhé mai mk phải nộp rồi
cho tam giác ABC . gọi E,D lần lượt là trung điểm của các cạnh AB, AC. trên tia đối tia BD lấy điểm M sao cho DM=DB. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Cmr: a, AM//BC b, Ba điểm M,A,N thẳng hàng c, AB+BC>2BD
Cho tam giác ABC cân tại A. Tia phân giác của góc B cắt AC tại D và tia phân giác của góc C cắt AB tại E. a) Chứng minh rằng: EBD D = EC b) Chứng minh rằng: ADE cân c) Chứng minh rằng: ED // BC d) Gọi O là giao điểm của EC và BD. Chứng minh rằng: OBC cân
Cho tam giác ABC vuông tai A. Tia phân giác của ABC cắt AC tại D. Trên BC lấy điểm E sao cho BE=BA.
a) CMR DB là tia phân giác của góc ADE
b) CMR DE vuông góc với BC
c) Trên tia đối của AB lấy điểm F sao cho AF=CE. CMR 3 điểm E,D,F thẳng hàng
d) CMR BD là đường trung trực của CF