Sửa đề: Lấy E thuộc tai đối của tia BC,Lấy F thuộc tia đối của tia CB sao cho CF = EB
Giải
a/Có: \(\widehat{ABC}+\widehat{ABE}=180^0\)
\(\widehat{ACB}+\widehat{ACF}=180^0\)
Lại có: \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
=> \(\widehat{ABE}=\widehat{ACF}\)
b/ Xét ΔABE và ΔACF ta có:
AB = AC (GT)
\(\widehat{ABE}=\widehat{ACF}\) (câu a)
EB = CF (GT)
=> ΔABE = ΔACF (c - g - c)
c/ Có: ΔABE = ΔACF (câu a)
=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng)
Hay: \(\widehat{HEB}=\widehat{KFC}\)
Xét ΔHBE và ΔKCF ta có:
EB = CF (GT)
\(\widehat{HEB}=\widehat{KFC}\) (cmt)
=> ΔHBE = ΔKCF (c.h - g.n)