Hình bạn tự vẽ nha!
Sửa lại đề là \(CF=EB.\)
a) Ta có:
\(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABE}=180^0\\\widehat{ACB}+\widehat{ACF}=180^0\end{matrix}\right.\) (các góc kề bù).
Mà \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
=> \(\widehat{ABE}=\widehat{ACF}.\)
b) Xét 2 \(\Delta\) \(ABE\) và \(ACF\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(BE=CF\left(gt\right)\)
=> \(\Delta ABE=\Delta ACF\left(c-g-c\right).\)
c) Theo câu b) ta có \(\Delta ABE=\Delta ACF.\)
=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng).
Hay \(\widehat{HEB}=\widehat{KFC}.\)
Xét 2 \(\Delta\) vuông \(EBH\) và \(FCK\) có:
\(\widehat{BHE}=\widehat{CKF}=90^0\left(gt\right)\)
\(EB=FC\left(gt\right)\)
\(\widehat{HEB}=\widehat{KFC}\left(cmt\right)\)
=> \(\Delta EBH=\Delta FCK\) (cạnh huyền - góc nhọn) (đpcm).
Chúc bạn học tốt!