Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Anh Nguyễn

Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Chứng minh rằng:
a)ΔABD=ΔACE
b)ΔAHB=ΔAKC
c)ΔADE là tam giác gì? Vì sao?
d)BC//HK

nguyen thi vang
18 tháng 1 2018 lúc 19:58

A B C D E H K

a) Ta có : \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A -gt)

Mà : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^o\\\widehat{ACB}+\widehat{ACE}=180^o\end{matrix}\right.\) (kề bù)

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD;\Delta ACE\) có :

\(AB=AC\) (tam giác ABC cân tại A -gt)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

b) Xét \(\Delta AHB;\Delta AKC\) có :

\(\widehat{AHB}=\widehat{AKC}\left(=90^{^O}\right)\)

\(AB=AC\) (tam giác ABC cân tại A)

\(\widehat{BAH}=\widehat{CAK}\) (do \(\Delta ABD=\Delta ACE\) -cmt)

=> \(\Delta AHB=\Delta AKC\) (cạnh huyền - góc nhọn)

c) Từ \(\Delta ABD=\Delta ACE\) - câu a

=> \(AD=AE\) (2 cạnh tương ứng)

Xét \(\Delta ADE\) có :

\(AD=AE\left(cmt\right)\)

=> \(\Delta ADE\) cân tại A (đpcm)

d) Xét \(\Delta AHK\) có :

\(AH=AK\) (do \(\Delta AHB=\Delta AKC\) - câu b)

=> \(\Delta AHK\) cân tại A

Nên ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{DAE}}{2}\left(1\right)\)

Xét \(\Delta ADE\) cân tại A (câu c) có :

\(\widehat{ADE}=\widehat{AED}=\dfrac{180^{^O}-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ADE}\left(=\dfrac{180^{^O}-\widehat{DAE}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> HK // DE

Lại có : \(\left\{{}\begin{matrix}B\in DE\\C\in DE\end{matrix}\right.\)

Do đó : \(\text{BC // HK (đpcm) }\)

Phạm Thảo Vân
18 tháng 1 2018 lúc 20:06

A B C D E H K

a) Vì tam giác ABC cân tại A => góc ABC = góc ACB ( tính chất tam giác cân )

Ta có : góc ABC + góc ABD = 180o ( hai góc kề bù ) ; góc ACB + góc ACE = 180o ( hai góc kề bù ) mà góc ABC = góc ACB ( tam giác ABC cân tại A ) => góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE , có :

AB = AC ( tam giác ABC cân tại A )

góc ABD = góc ACE ( chứng minh trên )

BD = CE ( gt )

=> tam giác ABD = tam giác ACE ( c-g-c )

Vậy tam giác ABD = tam giác ACE ( c-g-c )

b) Xét tam giác AHB và tam giác AKC , có :

AB = AC ( tam giác ABC cân tại A )

góc AHB = góc AKC ( = 90o )

góc HAB = góc KAC ( tam giác ABD = tam giác ACE )

=> tam giác AHB = tam giác AKC ( cạnh huyền - góc nhọn)

Vậy tam giác AHB = tam giác AKC ( cạnh huyền - góc nhọn)

c) Vì tam giác ABD = tam giác ACE ( chứng minh trên ) => AD = AE ( hai cạnh tương ứng ) => tam giác ADE cân tại A

Vậy tam giác ADE là tam giác cân

d) Vì tam giác AHB = tam giác AKC ( chứng minh trên ) => AH = AK ( hai cạnh tương ứng ) => tam giác AHK cân tại A => góc AHK = góc AKH ( tính chất tam giác cân )

Xét tam giác AHK cân tại A : góc HAK + góc AHK + góc AKH = 180o ( định lý tổng ba góc trong một tam giác )

=> góc AHK = góc AKH = 180o - góc HAK / 2 ( 1 )

Xét tam giác ADE cân tại A => góc ADE = góc AED ( tính chất tam giác cân ) : góc DAE + góc ADE + góc AED = 180o ( định lý tổng ba góc trong một tam giác )

=> góc ADE = góc AED = 180o - góc DAE / 2 ( 2 )

Từ (1) và (2) => góc AHK = góc ADE mà hai góc ở vị trí đồng vị nên HK // DE hay HK // BC (dấu hiệu nhận biết hai đường thẳng song song)

Vậy HK // BC ( đpcm )

****** Chúc bn hc tốt ***********


Các câu hỏi tương tự
Nguyen Phuong Nga
Xem chi tiết
Ghi Manh
Xem chi tiết
Hùng Lê
Xem chi tiết
Hùng Lê
Xem chi tiết
Bùi Kim Ngân
Xem chi tiết
WRC Remix
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Amy Nguyễn
Xem chi tiết
Tzngoc
Xem chi tiết
Tzngoc
Xem chi tiết