Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bạch Mai

Cho ΔABC cân tại A. Gọi M là trung điểm của cạnh BC
a) Chứng minh: Δ ABM = Δ ACE
b) Từ M vẽ MH ⊥ AB và MK ⊥ AC. Chứng minh BH = CK
c) Từ B vẽ BP ⊥ AC, BP cắt MH tại I. Chứng minh Δ IBM cân

Trần Nhật Minh
5 tháng 4 2017 lúc 22:37

A B C P K H M I a,Xét tam giác ABM=ACM có

góc B = góc C (gt)

BM=MC(gt)

AB=AC(gt)

Vậy tam giác ABM = ACM (C-G-C)

Vì MH vuông với AB,MK vuông góc với AC và tam giác ABC cân

=)góc HMB=góc KMC

b, Xét tam giác HBM và KCM có:

BM=MC(gt)

góc HMB=góc KMC

Vậy tam giác HBM=KCM(cạnh huyền góc nhọn)

=)BH = CK (2 cạnh tưng ứng)

c,

\(\widehat{ABM}=\widehat{ACM}\)

\(90^0-\widehat{ABM}=90^0-\widehat{ACM}\)

\(\Leftrightarrow\widehat{IBM}=\widehat{IMB}\)

Vậy tam giác IBM cân tại I.

Trần Nhật Minh
5 tháng 4 2017 lúc 22:38

Like cho bạn với nha !!!!


Các câu hỏi tương tự
Nguyễn Ngọc Hồng Huơng
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Phương Thảo
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết
Nguyễn Thị Hoa
Xem chi tiết