Bài 2. Đa thức một biến. Nghiệm của đa thức một biến

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho đa thức \(P(x) = a{x^2} + bx + c\)(a ≠ 0). Chứng tỏ rằng:

a) \(P(0) = c\);                                          b) \(P(1) = a + b + c\);                                c) \(P( - 1) = a - b + c\)

Hà Quang Minh
17 tháng 9 2023 lúc 15:19

a) Thay  x = 0  vào đa thức P(x) ta được:

\(P(0) = a{.0^2} + b.0 + c = 0 + 0 + c = c\). Vậy \(P(0) = c\).

b) Thay  x = 1  vào đa thức P(x) ta được:

\(P(0) = a{.1^2} + b.1 + c = a + b + c\). Vậy \(P(1) = a + b + c\).

c) Thay  x = – 1 vào đa thức P(x) ta được:

\(P(0) = a.{( - 1)^2} + b.( - 1) + c = a + ( - b) + c = a - b + c\). Vậy \(P( - 1) = a - b + c\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết