Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh

Cho đa thức :\(P\left(x\right)=x^3-3x^2+1\)  có  3 nghiệm thực phân biệt là :\(a;b;c\). Tính  giá trị của các  biểu thức sau :

a) \(A=a^4+b^4+c^4\)

b) \(B=\dfrac{a+1}{\left(b+c\right).\left(1-a\right)+1}+\dfrac{b+1}{\left(c+a\right).\left(1-b\right)+1}+\dfrac{c+1}{\left(a+b\right).\left(1-c\right)+1}\)

c) \(C=\dfrac{a^3}{a^2+2.b.c}+\dfrac{b^3}{b^2+2ac}+\dfrac{c^3}{c^2+2ab}\)

P/s:  Em xin phép nhờ quý thầy, quý cô cùng các bạn yêu toán vui lòng giúp đỡ em tham khảo với ạ. Em cám ơn nhiều lắm ạ!

Bùi Đức Huy Hoàng
17 tháng 3 2022 lúc 18:19

a) phương trình \(x^3-3x^2+1\) có 3 nghiệm thực phân biệt là a,b,c(đề bài). Áp dụng Định lí Vi-ét cho đa thức bậc 3 ta có:\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ac=0\\a.b.c=-1\end{matrix}\right.\)

ta có

      a+b+c=3

<=>\(\left(a+b+c\right)^2=9\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ac=9\)

<=>\(a^2+b^2+c^2=9\)

<=>\(\left(a^2+b^2+c^2\right)^2=81\)

<=>\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=81\)(1)

ta có ab+bc+ac=0

   <=>\(\left(ab+bc+ac\right)^2=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2-2.1.3=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2=6\)(2)

Thay (2) vào (1) ta có \(a^4+b^4+c^4+2.6=81\)

                                <=>\(a^4+b^4+c^4=69\)

Bùi Đức Huy Hoàng
17 tháng 3 2022 lúc 19:11

b) \(\dfrac{a+1}{\left(b+c\right)\left(1-a\right)+1}=\dfrac{a+1}{\left(3-a\right)\left(1-a\right)+1}=\dfrac{a+1}{3+a^2-4a+1}=\dfrac{a+1}{a^2-4a+4}=\dfrac{a+1}{\left(a-2\right)^2}\)

cmtt =>\(B=\dfrac{a+1}{\left(a-2\right)^2}+\dfrac{b+1}{\left(b-2\right)^2}+\dfrac{c+1}{\left(c-2\right)^2}\)=\(\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2}+3\left[\dfrac{1}{\left(a-2\right)^2}+\dfrac{1}{\left(b-2\right)^2}+\dfrac{1}{\left(c-2\right)^2}\right]\)=\(\dfrac{3\left[\left(a-2\right)\left(b-2\right)\right]^2+3\left[\left(b-2\right)\left(c-a\right)\right]^2+3\left[\left(c-2\right)\left(a-2\right)\right]^2}{\left[\left(a-2\right)\left(b-2\right)\left(c-2\right)\right]^2}\)

đặt t=(a-2)(b-2);u=(b-2)(c-2);v=(c-2)(a-2)     =>t+u+v=0

B thành \(\dfrac{3\left(t^2+u^2+v^2\right)}{t.u.v}\) bạn biến đổi để xuất hiện t+u+v

=>B=\(\dfrac{3\left(t+u+v\right)^2-6\left(t.u+u.v+t.v\right)}{t.u.v}=\dfrac{-6.\left(a-2\right)\left(b-2\right)\left(c-2\right)\left(a-2+b-2+c-2\right)}{t.u.v}=\dfrac{18}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)

(a-2)(b-2)(c-2)= abc-2(ab+bc+ac)+4(a+b+c)-8=12-9=3

Vậy B=3

Bùi Đức Huy Hoàng
17 tháng 3 2022 lúc 19:28

c) ta có \(\dfrac{a^3}{a^2+2bc}=\dfrac{a^3}{a^2-2ac-2ab}=\dfrac{a^2}{a-2c-2b}=\dfrac{a^2}{3a-2\left(a+b+c\right)}=\dfrac{a^2}{3\left(a-2\right)}\)

cmtt =>C=\(\dfrac{a^2}{3\left(a-2\right)}+\dfrac{b^2}{3\left(b-2\right)}+\dfrac{c^2}{3\left(c-2\right)}=\dfrac{a^2\left(b-2\right)\left(c-2\right)+b^2\left(a-2\right)\left(c-2\right)+c^2\left(a-2\right)\left(b-2\right)}{3\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)

bạn nhân vô thì ra C=\(\dfrac{4a^2-2a\left(ab+ac\right)-a+4b^2-2b\left(bc+ab\right)-b+4c^2-2c\left(ac+bc\right)-c}{3\left(a-2\right)\left(b-2\right)\left(c-2\right)}=\dfrac{ }{ }4\dfrac{ }{ }=\dfrac{4\left(a^2+b^2+c^2\right)-\left(a+b+c\right)+6abc}{3\left(a-2\right)\left(b-2\right)\left(c-2\right)}=\dfrac{4.9-3-6}{3.3}=\dfrac{27}{9}=3\)


Các câu hỏi tương tự
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Ctuu
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Giúp mik với mấy bn ơi C...
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết