Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Minh

Cho a,b,c thỏa \(a+b+c\le k\) thì \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\left(1+\dfrac{3}{k}\right)^3\)

Trường Nguyễn Công
13 tháng 11 2021 lúc 13:51

k=6
a,b,c=2

Nguyễn Việt Lâm
13 tháng 11 2021 lúc 14:02

\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế và rút gọn:

\(\Rightarrow1\ge\dfrac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(\Rightarrow\dfrac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\ge\dfrac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\dfrac{1}{\sqrt[3]{abc}}+1\right)^3\ge\left(\dfrac{3}{a+b+c}+1\right)^3\ge\left(\dfrac{3}{k}+1\right)^3\)

Trường Nguyễn Công
13 tháng 11 2021 lúc 14:13

undefined
 


Các câu hỏi tương tự
Ctuu
Xem chi tiết
Đức Anh Lê
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Thị Quỳnh Như
Xem chi tiết
Lê Trúc Anh
Xem chi tiết
hoàng minh chính
Xem chi tiết
Giúp mik với mấy bn ơi C...
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết