Lời giải:
a)
\(P=2x^4-7x^3-2x^2+13x+6\)
\(=2x^3(x+1)-9x^2(x+1)+7x(x+1)+6(x+1)\)
\(=(x+1)(2x^3-9x^2+7x+6)\)
\(=(x+1)[2x^2(x-2)-5x(x-2)-3(x-2)]\)
\(=(x+1)(x-2)(2x^2-5x-3)\)
\(=(x+1)(x-2)[2x(x-3)+(x-3)]\)
\(=(x+1)(x-2)(x-3)(2x+1)\)
b)
Vì \(x-3; x-2\) là hai số nguyên liên tiếp nên
\((x-2)(x-3)\vdots 2\Rightarrow P(x)=(x+1)(x-2)(x-3)(2x+1)\vdots 2\)
Lại có, xét các TH của $x$ như sau:
Nếu \(x=3k\Rightarrow x-3=3k-3\vdots 3\Rightarrow P(x)\vdots 3\)
Nếu \(x=3k+1\Rightarrow 2x+1=2(3k+1)+1=6k+3\vdots 3\Rightarrow P(x)\vdots 3\)
Nếu \(x=3k+2\Rightarrow x-2=3k\vdots 3\Rightarrow P(x)\vdots 3\)
Vậy \(P(x)\vdots 3\)
Thấy $P(x)$ chia hết cho cả 2 và 3 mà $2,3$ nguyên tố cùng nhau nên $P(x)$ chia hết cho $6$
Do đó ta có đpcm.