Cho đa thức: \(f\left(x\right)=x^2-\left(m+2\right)x+2m+7\) (m là tham số). Hãy tìm các giá trị nguyên của m để đa thức f(x) có 2 nghiệm nguyên phân biệt
Xác định đa thức f(x) có bậc ba thỏa mãn: \(f\left(x+1\right)-f\left(x\right)=x^2\left(\forall x\right)\) và \(f\left(2\right)=2020\)
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Cho f(x) là đa thức với hệ số nguyên .Biết f(2017).f(2018)=2019. Chứng minh phương trình f(x)=0 không có nghiệm
cho f(x) là 1 đa thức với hệ số nguyên. BIết f(1).f(2) = 2013, chứng minh phương trình f(x) =0 không có nghiệm nguyên
Cho f(x) =\(2x^5+ax^4+bx^3+cx^2+dx+e\) và g(x) =\(x^2+x+2014\) là những đa thức với hệ số nguyên. Biết rằng phương trình f(x)=0 có 5 nghiệm phân biệt ; g(x) =0 không có nghiệm. Chứng minh \(8\sqrt[3]{f\left(2014\right)}>1\)
Cho đa thức \(f\left(x\right)=x^2+mx+n\) với \(m,n\in Z\). Chứng minh rằng tồn tại số nguyên k để \(f\left(k\right)=f\left(2021\right).f\left(2022\right)\)
Cho đa thức f(x) = \(x^4+x^3+x^2+x+1\)tìm số dư khi chia f(x^5) cho f(x)
Cho đa thức f(x) = ax^3 + bx^2 + cx + d.
Biết f(1)=27; f(2)=125; f(3)=343; f(4)=735.
Tìm số dư trong phép chia đa thức f(x) lần lượt cho : 3x-5; 5x+2; 7x-1
ghi kết quả ngăn cách bởi dấu ;