a: Xét ΔMNP vuông tại M và ΔHNM vuông tạiH có
góc N chung
=>ΔMNP đồng dạng với ΔHNM
=>NM/NH=NP/NM
=>NM^2=NH*NP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH^2=HN*HP
c: DN/DM=PN/MP=MN/HM
=>DN*HM=DM*MN
a: Xét ΔMNP vuông tại M và ΔHNM vuông tạiH có
góc N chung
=>ΔMNP đồng dạng với ΔHNM
=>NM/NH=NP/NM
=>NM^2=NH*NP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH^2=HN*HP
c: DN/DM=PN/MP=MN/HM
=>DN*HM=DM*MN
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a, Chứng minh AH = MN b, Chứng minh tam giác AHM đồng dạng với tam giác AHB rồi suy ra AH^2 = AM . AB c, Chứng minh tam giác AMN đồng dạng với tam giác ACB d, Cho AB = 6cm, AC = 8cm. Tính diện tích của tam giác AMN.
cho ΔDEF vuông tại E có EF = 6cm, ED = 8cm, đường cao EM
a Chứng minh rằng ΔMEF đồng dạng với ΔEDF
b Chứng minh EM2 = MD.MF
c Kẻ tia phân giác góc D cắt EF tại N. chứng minh NE.DF=NF.ED
d Gọi I là giao điểm của DN và EM. Chứng minh tam giác EIN
Cho tam giác ABC vuông tại C (AC<BC). Vẽ tia phân giác Ax của BAC cắt cạnh BC tại I. Vẽ BH vuông góc tại Ax tại H.
a) Chứng minh tam giác AIC đồng dạng tam giác ABH
b) Chứng minh HB 2 = HI.HA
c) Kẻ đường cao CK của tam giác ABC> Kẻ KD là đường phân giác của tam giác CKA. Chứng minh \(\dfrac{CD}{DA}=\dfrac{CB}{CA}\)
Xin hãy giúp mình với ạ! Mình xin cám ơn!
Cho tam giác ABC vuông tại A, AB=6cm,AC=8cm, đường cao AH (H thuộc BC)
a) Tính BC
b) Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
c) Gọi BD là đường phân giác của góc B ( D thuộc AC). Tính DA,DC
Giải giúp em gấp ạ! Cảm ơn
Cho hình thang MNPQ (MN//PQ, MN<PQ). Gọi E là giao điểm của MQ và NP. Đường phân giác trong của góc E cắt MN, PQ lần lượt tại D, K.
a) Chứng minh hai tam giác EDM và EKQ đồng dạng.
b) Chứng minh: EM.EK=EQ.ED
Giúp em với ạ
cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm. đường cao AH và phân giác BDcắt nhau tại I (H trên BC và D trên AC)
a)tính độ dài AD,DC
b)Chướng minh tam giác ABC đồng dạng tam giác HBA và AB2=BH.BC
c)chứng minh tam giác ABI đồng dang với tam giác CBD
Cho tam giác ABC vuông tại A,Ah là đường cao,bd là đường phân giác.i là giao điểm ah và bd A. Chứng minh bac đồng dạng bha B.chứng minh ab×bi=bd×hb C.chứng minh aid cân D.cho hb=4cm,hc=9.tính ah
cho tam giác nhọn ABC có các đường cao AD, BE và CF đồng quy tại H. Chứng minh:
a, tam giác AEF đồng dạng với tam giác ABC
b, H là giao điểm các đường phân giác của tam giác DEF
c, BH.BE + CH.CF = BC2
Cho hình thoi ABCD có góc A bằng 600. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt
đường thẳng AB tại E và đường thẳng AD tại F.
a)Chứng minh : tam giác BEC đồng dạng tam giác AEF
b)Chứng minh : tam giác DCF đồng dạng tam giác AEF
c)Chứng minh : BE.DF = DB2.
d) Chứng minh : tam giác BDE đồng dạng tam giác DBF