Cho tam giác ABC có ba góc nhọn, các điểm M, N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H
a) Nối MN, Δ AHB đồng dạng với tam giác nào?
b) Gọi G là trọng tâm Δ ABC, chứng minh Δ AHG đồng dạng với Δ MOG?
c) Chứng minh ba điiểm M, O, G thẳng hàng?
Cho ΔABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a/ C/m ΔAEF và ΔABC đồng dạng.
b/ Gọi I là giao điểm của AD và EF. C/m IH.AD = AI.HD.
c/ Cho AB = 10cm; AC = 17cm; BC = 21cm. Tính \(S_{\text{Δ}ABC}\).
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho △ABC nhọn, các đường cao BD và CE cắt nhau tại H. Đường vuông góc AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC. Chứng minh:
a)△ADB đồng dạng với △AEC và △AED đồng dạng với △ACB
b)HE.HC = HD.HB
c)H ,M ,K thẳng hàng và góc AED = góc ACB
d)AH cắt BC tại O. Chứng minh: BE.B + CD.CA = BC2
e)Chứng minh: H là giao điểm các đường phân giác của △ODE
f)△ABC có điều kiện gì thì tứ giác BHCK là hình thoi? Hình chữ nhật?
1,Cho tam giác ABC vuông tại A .Qua trung điểm M của cạnh BC ta kẻ đường thẳng vuông góc với cạnh BC cắt cạnh AC tại H ,cắt tia BA ở N .Gọi E là trung điểm của HN .
a,CMR: Tam giác ABC đồng dạng tam giác MBN.
b,CMR: AB . MC =AC . MH
c,Chứng minh AM vuông góc với AE .
Cho tam giác ABC.Gọi M là trung điểm của BC,N là trung điểm của AC.Các đường trung trực của cạnh BC và AC cắt nhau tai O, H là trực tâm và G là trọng tâm. Cmr:
a, \(\Delta ABH\) và \(\Delta MNO\) đồng dạng
b, \(\Delta AHG\) và \(\Delta MOG\) đồng dạng
c, H,O,G thẳng hàng
Cho Δ ABC, trên cạnh AB lấy điểm M sao cho MB = 2MA. Từ M kẻ Mi, MK lần lượt song song với BC và AC ( I ∈ AC, K ∈ BC )
a) Chứng minh : ΔAMI ᔕ ΔABC
b) Chứng minh: ΔAMI ᔕ ΔMBK
c) Tính tỉ số chu vi của ΔAMI và ΔMBK
Chú thích : Kí hiệu ᔕ là đồng dạng