\(49=\left(3x-4y\right)^2=\left(\sqrt{3}.\sqrt{3}x-2.2y\right)^2\le\left(3+4\right)\left(3x^2+4y^2\right)\)
\(\Rightarrow3x^2+4y^2\ge7\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x-4y=7\\x=-y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)