Cho \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}\) (\(x\ge0;\) \(x\ne4\) ). Tổng các giá trị nguyên của x để biểu thức A nguyên?
giả sử x,y\(\ge0\) thỏa mãn\(x^3+y^3+xy=x^2+y.\)Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\dfrac{1+\sqrt{x}}{2+\sqrt{y}}+\dfrac{2+\sqrt{x}}{1+\sqrt{y}}\)
Cho \(x,y\ge0\) thỏa mãn \(x+y=2\sqrt{3}.\)Tìm Max:
\(P=\left(x^4+1\right)\left(y^4+1\right)\)
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
Cho \(x,y,z\ge0\).Tìm giá trị lớn nhất :
\(P=\dfrac{x}{x^2+y^2+2}+\dfrac{y}{y^2+z^2+2}+\dfrac{z}{z^2+x^2+2}\)
cho 3 số x, y, z dương thỏa mãn x+ y+ z=1
\(\sqrt{2x^2+xy+2y^2}\)+\(\sqrt{2y^2+yz+2z^2}\)+\(\sqrt{2z^2+zx+2x^2}\)>= 5
Cho các số thực dương a,b,c thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{x^2+z^2}=2015\)
Tìm giá trị nhỏ nhất của biểu thức: T=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
Cho biểu thức: \(A=\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\) với \(x\ge0\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại \(x=3-2\sqrt{2}\)
Rút gọn : a) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
b)\(\dfrac{x+4y-4\sqrt{xy}}{\sqrt{x}-2\sqrt{y}}+\dfrac{y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x\ge0;y\ge0;x\ne4y\right)\)
c)\(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\)
d)\(\dfrac{9-x}{\sqrt{3x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}\)
e)\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
g)\(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)với\) a, b \(\ge\)0 , a \(\ne\)9; b\(\ne\)25
Mọi người giúp tớ với , cảm ơn nhiều nhiều ạ !!