Bạn tham khảo:
Câu hỏi của Thiếu Niên Thần Thánh - Toán lớp 9 | Học trực tuyến
Bạn tham khảo:
Câu hỏi của Thiếu Niên Thần Thánh - Toán lớp 9 | Học trực tuyến
Cho 2 số thực a, b thỏa mãn xy + \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=1\)
CMR: \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Cho 3 số dương x, y, z thỏa mãn điều kiện xy + yz + zx = 1. Tính tổng:
\(S=\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+x^2\right)\left(1+z^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Cho x,y là 2 số thực thỏa mãn\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=0\), chứng minh rằng \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
Cho x,y,z>0 thỏa mãn \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{matrix}\right.\)
Tính P=\(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Cho x,y,z thỏa mãn xy+yz+xz=1
Tính tổng: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1-z^2}}\)
Cho x,y,z thỏa mãn xy+yz+xz = 1.Tính
\(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)