Cho a,b,c,d là các số thực không âm thỏa \(a^2+b^2+c^2+d^2=4\). CMR:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{\sqrt{2}}\sqrt{2+ab+ac+ad+bc+bd+dc}\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Tìm GTNN của
P=\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+b^2}+\sqrt{c^2+ac+a^2}\)
Cho a;b;c là các số thực dương thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm Min của: \(A=\dfrac{a^3}{bc+a^2}+\dfrac{b^3}{ac+b^2}+\dfrac{c^3}{ab+c^2}\)
Cho a,b,c,d dương thỏa mãn \(a^2+b^2+c^2+d^2=4.\)Chứng minh:
\(16\left(2-a\right)\left(2-b\right)\left(2-c\right)\left(2-d\right)\ge\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)
cho biểu thức \(P=a^4+b^4-ab\), với a,b là các số thực thỏa mãn \(a^2+b^2+ab=3\)
tìm Min và MAx của biểu thức P
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
Cho a;c;b;d là các số thực dương thỏa mãn: a+b+c+d=\(1\)
Tìm Min của: \(A=\dfrac{1+\sqrt{a}}{1-a}+\dfrac{1+\sqrt{b}}{1-b}+\dfrac{1+\sqrt{c}}{1-c}+\dfrac{1+\sqrt{d}}{1-d}\)
Giúp mk với huhu. Mk cảm ơn....
Cho a, b, c là các số thực thỏa mãn \(a^2+b^2+c^2\le2\).
Tìm giá trị nhỏ nhất của biểu thức P = 2023ca - ab - bc.
Cho a,b,c >0 thỏa mãn : \(a^2+b^2+c^2=abc\\\) .Tìm max của biểu thức :
\(P=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)