Ta có:
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)
\(\Rightarrow ab+ac+bc\le\dfrac{2.3}{2}=3\) (1)
Lại có: \(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)
\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+3}{2}=3\) (2)
Cộng vế với vế của (1) và (2) ta được:
\(a+b+c+ab+ac+bc\le6\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
\(\Rightarrow A=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2017}}=\dfrac{3}{3}=1\)