Cho a,b,c dương thỏa mãn ab+bc+ca=3.
Chứng minh: \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
1 . Cho 3 số thực dương a,b,c. CMR::
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
2 . cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c dương và a+b+c=3. Tìm GTNN của \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTNN :
\(P=\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ac}\)
Cho a,b,c > 0 thỏa mãn ab + bc + ca = 3
Tìm GTNN của \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
cho a,b,c là 3 số dương thỏa mãn: a2+b2+c2=3
.Chứng minh:
\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}< =\frac{1}{2}\)
hack não)):
Cho các số thực dương a, b, c thỏa mãn: abc + a + b = 3ab. Chứng minh rằng:\(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{b}{bc+b+1}}+\sqrt{\frac{a}{ca+c+1}}\ge\sqrt{3}\)