Áp dụng bđt Bunhiacopski ta có
\(9p^2\ge3\left(m^2+2n^2\right)\ge\left(m+2n\right)^2\)
=> \(3p\ge m+2n\)
Ta có \(\frac{1}{m}+\frac{2}{n}=\frac{1}{m}+\frac{1}{n}+\frac{1}{n}\ge\frac{9}{m+2n}\ge\frac{9}{3p}=\frac{3}{p}\)
Dấu "=" xảy ra khi m=n=p
Áp dụng bđt Bunhiacopski ta có
\(9p^2\ge3\left(m^2+2n^2\right)\ge\left(m+2n\right)^2\)
=> \(3p\ge m+2n\)
Ta có \(\frac{1}{m}+\frac{2}{n}=\frac{1}{m}+\frac{1}{n}+\frac{1}{n}\ge\frac{9}{m+2n}\ge\frac{9}{3p}=\frac{3}{p}\)
Dấu "=" xảy ra khi m=n=p
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Chứng minh \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
cho các số thực dương x,y,z thỏa mãn xyz=1 chứng minh rằng \(\frac{x}{\sqrt{x+\sqrt{yz}}}+\frac{y}{\sqrt{y+\sqrt{zx}}}+\frac{z}{\sqrt{z+\sqrt{xy}}}\ge\frac{3}{2}\)
Cho các số dương x,y,zz thỏa mãn điều kiện xy+yz+xz=670. Chứng minh rằng
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Cho các số thực dương a,b,c thỏa mãn c\(\ge\)a.Chứng minh rằng:
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+4\left(\frac{c}{c+a}\right)^2\ge\frac{3}{2}\)
Cho hai số dương x,y thỏa mãn: x+y=1
Chứng mình rằng: \(P=6\left(x^3+y^3\right)+8\left(x^4+y^4\right)+\frac{5}{xy}\ge\frac{45}{2}\)
Cho x,y,z là các số thực dương thoả mãn xyz = 1. Chứng minh rằng: \(\frac{1}{x+y+z}+\frac{1}{3}\ge\frac{2}{xy+yz+zx}\)