Sửa lại đề \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) (cái này có trong CHTT rồi nhé nhưng giờ bỗng dưng rảnh làm lại luôn đỡ mất công tìm)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VP^2=\left(a+b+c\right)\left(a'+b'+c'\right)\)
\(\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)=VT^2\)
Tức là \(VP\ge VT\)
Xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)