Trong câu hỏi tương tự có người làm rồi đó bạn:
https://hoc24.vn/hoi-dap/question/513461.html
Trong câu hỏi tương tự có người làm rồi đó bạn:
https://hoc24.vn/hoi-dap/question/513461.html
Cho a,b,c > 0 và ab+bc+ca = 1. Tìm: \(MaxP=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+c^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Cho a,b,c>0 và a+b+c=1. Tìm: \(MinP=\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\)
Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca\ge3\) . CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
Cho a, b, c là các số thực dương thỏa mãn 2(a2 +b2 +c2) = a+b+c+3. Chứng minh rằng:
\(\dfrac{1}{\sqrt{a^4+a^2+1}}\)+ \(\dfrac{1}{\sqrt{b^4+b^2+1}}\)+ \(\dfrac{1}{\sqrt{c^4+c^2+1}}\) \(\ge\sqrt{3}\)
mng giúp mình nhé, cảm ơnn
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. CMR :
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
3) Cho các số dương a và b thỏa mãn a - b = \(\sqrt{1-b^2}\) - \(\sqrt{1-a^2}\) Tính a2 + b2
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
\(a)\)\(Cho\) \(a>b,ab=1\)
\(C.m:\)\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
\(b)C.m:\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\)
Cho \(a,b,c>0\) và \(a+b+c=1\). Tìm:
\(MinP=\sqrt{a^2+a+b^2}+\sqrt{b^2+cb+c^2}+\sqrt{c^2+ac+a^2}\)
Cho a,b,c là 3 số thực dương . CMR a5/bc+b5/ca+c5/ab≥a3+b3+c3