Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Bình Yên

Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. CMR :

\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)

Akai Haruma
4 tháng 7 2019 lúc 15:28

Lời giải:

Vì $a+b+c=1$ nên:

\(\text{VT}=\frac{a(a+b+c)+bc}{b+c}+\frac{b(a+b+c)+ca}{c+a}+\frac{c(a+b+c)+ab}{a+b}\)

\(=\frac{(a+b)(a+c)}{b+c}+\frac{(b+c)(b+a)}{c+a}+\frac{(c+a)(c+b)}{a+b}\)

Đặt $(a+b,b+c,c+a)=(x,y,z)$. Bài toán trở thành:

Cho $x,y,z>0$ thỏa mãn $x+y+z=2$. CMR: \(\text{VT}=\frac{xz}{y}+\frac{xy}{z}+\frac{yz}{x}\geq 2\)

----------------------

Thật vậy:\(\text{VT}=\frac{x^2z^2+x^2y^2+y^2z^2}{xyz}\). Theo hệ quả quen thuộc của BĐT AM-GM thì $x^2y^2+y^2z^2+z^2x^2\geq xyz(x+y+z)=2xyz$

\(\Rightarrow \text{VT}=\frac{x^2z^2+x^2y^2+y^2z^2}{xyz}\geq \frac{2xyz}{xyz}=2\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{2}{3}$ hay $a=b=c=\frac{1}{3}$


Các câu hỏi tương tự
guard
Xem chi tiết
guard
Xem chi tiết
guard
Xem chi tiết
guard
Xem chi tiết
Quốc Khánh
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
dbrby
Xem chi tiết
bang khanh
Xem chi tiết