Áp dụng BĐT : ( x - y)2 ≥ 0∀x,y
⇒ x2 + y2 ≥ 2xy
Ta có : a2 + b2 ≥ 2ab ( *)
b2 + c2 ≥ 2bc (**)
c2 + a2 ≥ 2ac (***)
Cộng từng vế của ( *;**;***) , ta có :
2( a2 + b2 + c2) ≥ 2( ab + bc + ac)
⇔ 3( a2 + b2 +c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{3}{4}\)
Đặt \(a=x+\dfrac{1}{2};b=y+\dfrac{1}{2};c=z+\dfrac{1}{2}\)
Ta có: \(a^2+b^2+c^2=\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z+\dfrac{1}{2}\right)^2\)
\(=x^2+x+\dfrac{1}{4}+y^2+y+\dfrac{1}{4}+z^2+z+\dfrac{1}{4}\)
\(=x^2+y^2+z^2+\left(x+y+z\right)+\dfrac{3}{4}\)
\(=x^2+y^2+z^2+\dfrac{3}{2}+\dfrac{3}{4}\)
\(\Rightarrow x^2+y^2+x^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> đpcm