Bài 4: Bất phương trình bậc nhất một ẩn.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thiên Tuấn

cho các số a b c thỏa mãn điều kiện a+b+c=6. CMR ab/6+a-c +bc/6+b-a +ca/6+c-b <= 2

Akai Haruma
2 tháng 2 2020 lúc 20:04

Lời giải:

Đặt biểu thức đã cho là $P$

Do $a+b+c=6$ nên:

$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$

$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$

$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$

$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$

Áp dụng BĐT Cauchy-Schwarz:

$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$

Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$

$\Rightarrow P\leq 2$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

Khách vãng lai đã xóa
Akai Haruma
7 tháng 2 2020 lúc 14:24

Lời giải:

Đặt biểu thức đã cho là $P$

Do $a+b+c=6$ nên:

$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$

$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$

$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$

$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$

Áp dụng BĐT Cauchy-Schwarz:

$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$

Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$

$\Rightarrow P\leq 2$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đặng Gia Ân
Xem chi tiết
Tấn Phát
Xem chi tiết
Không Biết Tên
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
Hoàng Ngọc Thiện Mỹ
Xem chi tiết
lưu ly
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Niii
Xem chi tiết
Hoang Thiên Di
Xem chi tiết