Ta có: \(\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\dfrac{a+b}{4}\ge\dfrac{ab}{a+b}\)
\(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow\dfrac{b+c}{4}\ge\dfrac{bc}{b+c}\)
\(\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\dfrac{c+a}{4}\ge\dfrac{ac}{a+c}\)
Cộng từng vế BĐT, ta được:
\(\dfrac{a+b}{4}+\dfrac{b+c}{4}+\dfrac{a+c}{4}\ge\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\)
\(\Leftrightarrow\dfrac{1}{2}\left(a+b+c\right)\ge\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\)
=> ĐPCM
Dấu = xảy ra khi: a = b = c