a, ĐKXĐ:\(\begin{cases} 2x+10\not=0\\x\not=0\\2x(x+5)\not=0\end{cases} \Leftrightarrow \begin{cases} x\not=0\\x\not=-5\end{cases}\)
b,
\(\dfrac{x^{2}+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x(x+5)}\\=\dfrac{x^{2}+2x}{2(x+5)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x(x+5)}\\=\dfrac{x(x^{2}+2x)+2(x+5)(x-5)+50-5x}{2x(x+5)}\\=\dfrac{x^{3}+4x^{2}-5x}{2x(x+5)}=\dfrac{x(x^{2}+4x-5)}{2x(x+5)}\\=\dfrac{(x-1)(x+5)}{2(x+5)}=\dfrac{x-1}{2}\)
Ta có:
\(\dfrac{x-1}{2}=1\\\Leftrightarrow x-1=2\\\Leftrightarrow x=3\)