a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{2}{\sqrt{x}+3}\)
b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{4-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow1-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 1\)
hay x<1
Kết hợp ĐKXĐ, ta được: 0<x<1