GTNN có thể đạt được khi |x| - 2017 đạt giá trị âm lớn nhất
=> |x|-2017 = -1
vậy GTNN của biểu thức là -2018
GTNN có thể đạt được khi |x| - 2017 đạt giá trị âm lớn nhất
=> |x|-2017 = -1
vậy GTNN của biểu thức là -2018
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
Cho biểu thức A=\(\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\). Tìm GTNN của A
Tìm GTNN ( giá trị nhỏ nhất ) của biểu thức A :
A= \(\dfrac{2018}{2019-\left|x-2017\right|}\)
Tính GTNN của biểu thức:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
Tìm giá trị nhỏ nhất của biểu thức C=\(\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
Tìm GTNN của biểu thức sau :
A=\(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|+2018\)
Tìm GTNN của biểu thức:
\(\left|2021-x\right|+\dfrac{1}{\sqrt{\left(-2\right)^2}}.\left|4040-2x\right|\)
A=3+\(\left[2x-1\right]\) ,B=x^2+\(\left[3y+5\right]+2\) ,C=2017-(x+1)^2
Tìm GTLN hoặc GTNN CỦA BIỂU THỨC SAU
Câu 1 :
Tìm x biết : \(\left|2017-x\right|+\left|2018-x\right|+\left|2019-x\right|=2\)
Câu 2:
Cho các số nguyên dương a+b+c=2016. Chứng minh gtri biểu thức sau không phai la một số nguyên : A= \(\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)