<=> \((\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}).\frac{x-1}{\sqrt{x}+1}\)
<=> \(\frac{x-\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}.\frac{x-1}{\sqrt{x}+1}\)
<=> \(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{x-1}{\sqrt{x}+1}\)
<=>\(\frac{x-1}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}-1\)
Để Q >0 thì \(\sqrt{x}-1>0\)
\(\sqrt{x}>1\Leftrightarrow x>1\)
Vậy để Q>o thì x>1